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Introduction 

Soil erosion models are a widely used tool for policy making land use planning. The 
development of Geographic Information Systems (GIS) has facilitated the production 
of spatial predictions across a range of land uses, topographic and agro-climatic 
regions. The maps produced may look impressive, but how much confidence do we 
really have in the predictions they represent? Planners often prefer to ignore the 
uncertainties which are present in model output and may not wish to know that we 
have little idea as to how well our spatial predictions represent reality. This, of course, 
is further confused by the considerable uncertainties that exist in our spatial 
observations that we use to drive and assess model prediction performance. If erosion 
modellers are also oblivious to the validity or otherwise of their predictions, then are 
model simulations more hocus-pocus1 than a true reflection of the spatial erosion rates 
within a landscape?  

This paper sets out to answer the research question: what does a distributed model that 
performs well at simulating erosion responses at the catchment outlet tell us about the 
true nature of the spatial erosion rates within the catchment? 

Experiment 

To demonstrate the problems of developing confidence in spatially distributed 
predictions we will use a fictitious, small and highly erodible catchment (Figure 1), 
loosely based on a real catchment in Southern France. The catchment is a former mine 
and much of the surface is devoid of vegetation and the soils are of low permeability. 
The total area of the catchment is 17.8 ha and the slopes drain down towards a single 
outlet drain. The area has a mean annual rainfall of 725 mm and this falls over 80 
days a year.  

We wish to calculate mean annual soil loss from the catchment and to determine the 
relative contribution of different areas of the catchment. To do this we have divided 
the catchment based on information about soils, slopes and vegetation. The catchment 
divides into five areas (Figure 2). To determine the annual soil loss for each of these 
areas we applied the Morgan, Morgan, Finney (MMF) soil erosion model (Morgan et 
al., 1984). The MMF model is a relatively simple process based model suitable for 
predicting annual soil losses from plots and small catchments and can easily be 
programmed in a spreadsheet environment.  

                                                 
1 Hocus-pocus is defined as trickery by the Collins dictionary. 
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To enable us to quantify the impacts of parameter uncertainty within the model on 
simulated predictions made with the model, we linked the model to a commercially 
available package, Crystal Ball®, which facilitates the use of Monte Carlo analysis in 
modelling.  Monte Carlo analysis allows us to establish distributions, rather than 
single value estimates, of model inputs and parameters as well as observations used to 
evaluate the model. These distributions are based on measured data or distributions 
taken from the literature. The software then samples from these distributions and 
executes the model, storing the output information for each run. Once a large number 
of runs have been completed a distribution of outputs can be viewed, and interrogated 
to provide values of the model outputs at different levels of confidence. In this 
example we use 10 000 runs of the model. Had we applied the model in the traditional 
manner where we would have selected a single effective parameter for each element 
our run would only have represented one of the 10 000 combinations we ran using the 
Monte Carlo analysis. 
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Figure 1. Topographic map of the study 
catchment. 

Figure 2. Elemental division of the 
catchment 

Results  

Figure 3 gives the distribution of total soil loss for the entire catchment. This is 
normally distributed around a mean value 786 t yr-1 with a maximum of 2503 t yr-1and 
a minimum of 7 t yr-1.  95% of the predictions lie below 1448 t yr-1. The results from 
the different elements also have a large range (Table 1). We should not be 
disheartened by this as it has been shown previously (Quinton, 1997; Brazier et al., 
2000) that other erosion models such as EUROSEM (Morgan et al., 1998) and WEPP 
(Nearing et al., 1989) also suffer from considerable parameter uncertainty resulting in 
uncertain outputs. 

The data generated by the 
model also reveals 
information which is 
pertinent to our initial 
question. If we look more 
closely at Figure 3 we find 
that the mean is 
represented by over two 
hundred simulation results 
and over 200 different and 
equally possible parameter 
sets.  
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Figure 3. Distribution of soil loss from the study 
catchment after 10 000 simulations with the MMF 
model. 95% percentile indicated by a change in bar 
shading. 
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We took those 
simulations 

which produced 
between 780 and 
790 t yr-1 total 
sediment loss 

from the catchment and looked at the distribution of soil losses for each of the 
elements. Figure 
4 demonstrates 
clearly that 
knowing the soil 
loss at the outlet 
of a catchment is 
no guarantee that 
the contributions 
of the different 
elements within 
the catchment will 
be uniquely 
defined. For 
element 1 we can 
say that the soil 
loss will be below 
100 t yr-1. 
However, the 
contributions of 
the over elements vary widely. With some elements’ contributions ranging from 
almost nothing to nearly the entire soil loss from the catchment. 

Discussion and conclusion 

The findings from this experiment indicate that if we calibrate or validate our erosion 
models at the catchment outlet we should not expect them to produce spatially 
accurate predictions. The calibration or validation at the outlet, simply demonstrates 
that the model can fit the outlet data and tells us nothing about spatially distributed 
soil erosion rates within the catchment. In our example it is only possible to identify 
only element which consistently behaves the same way (element 1) with the other 
elements all producing a wide range of soil losses.  

This leaves us with a problem, because policy makers and land use planners are 
demanding spatially distributed predictions of soil erosion. If the soil erosion 
community is going to respond to this demand then it also has to consider how it will 
demonstrate confidence in spatial predictions. We make the following suggestions: 

1. Modellers will need to demonstrate how their models perform at different scales 
and in different environments within an uncertainty framework, e.g. using Monte 
Carlo based techniques, such as performed in this study, or other uncertainty 
estimation techniques like GLUE (Beven & Binley, 1992; Beven & Freer, 2001)  

2. Spatial models require a nested set of observations to be evaluated against, again 
within an uncertainty framework, ranging from how the model performs at a range of 
environments from the grid cell scale, to micro-catchments comprising a few grid 
cells and finally to larger catchments. Without this analysis we will not understand 

Table 1. Minimum and maximum soil loss ( t yr-1
) for each of the 

catchment elements and the catchment outlet 
 Element number 

 1 2 3 4 5 outlet 

Minimum 0 0 0 0 0 7 

Maximum 121 358 318 2012 858 2504 
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Figure 4. Number of simulations resulting in a soil loss value 
between the lower bin value and the bin value indicated on the 
axis for each element, where the a total catchment soil loss was 
between 780 and 790 t yr-1. 
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which environments the model performs well in and whether or not the algorithms 
linking the grid cells perform well. 

3. Models need to be tested on a range of environments from parameter data rich 
research catchments to parameter data poor catchments. Modellers then need to 
determine what these results mean in terms of our ability to robustly evaluate models 
and to quantify realistic prediction uncertainties. Furthermore better experiments need 
to be designed that try to capture not only the observed erosion rates, but also some 
understanding of the limitations and uncertainties in our ability to quantify those rates. 

4. Policy makers and land use planners need to be trained to understand uncertainty 
and risk. The real world is highly variable and uncertain, expecting to quantify the 
impacts of policies in catchments with single values is no better than relying on 
hocus-pocus.  
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